Sheet-Like Structure Formation inside the Core of Massive Neutron Star
Published: 2023-05-17
Page: 75-85
Issue: 2023 - Volume 5 [Issue 1]
Ramen Kumar Parui
*
ARC, Room No-F101, Block-F, Mall Enclave,13, K. B. Sarani, Kolkata-700080, India.
*Author to whom correspondence should be addressed.
Abstract
We investigate the possible effect of an ultra-strong magnetic field on the core matter, in particular quark matter inside a massive rotating neutron star. Based on the discovery “Evidence of quark matter cores in massive Neutron Stars” by Annala et al. our main motivation is to understand the type of structure formation that appears in the core of a rotating neutron star, magnetar. Taking into account two facts:
- Free u, d, and s quarks can form a composite (i.e. quark matter composite) because of the seed magnetic field located inside the core of a massive neutron star, magnetar in analogy with the observed in the weapon “Bola” , and composite formation in a ferromagnetic liquid crystal;
- Observation of sheet-like structure in ferromagnetic composites placed in a magnetic field having rotation,
we propose that a sheet-like structure might be appeared in the ferromagnetic quark matter composites inside the cores of massive rotating neutron stars , in particular a magnetar in the presence of its ultra-strong magnetic field which acts as catalyst.
Keywords: Quark, quark-matter, neutron star, magnetar, field structured composites
How to Cite
Downloads
References
Lai X, Xia C, Xu R. Bulk strong matter: The Trinity. Adv. in Phys. 2022;8:2137433.
Schuetrumpf B, Klatt MA, Iida K, Maruhn Mecke K, Reinhard PG. Time dependent Hartee Fock approach to Nuclear ‘Pasta’ at finite temperature. Phys. Rev. C 2013;87: 055805.
Bethe HA. Supernova Mechanism. Rev. Mod. Phys. 1990;62:801.
Nakazato K, Oyamatsu K, Yamada S. Pasta phase with Gyroid Morphology at subnuclear densities. AIP Conf. Proc. 2010; 1238:218.
Nakazato K, Oyamatsu K, Yamada S. Gyroid Phases in Nuclear Pasta. Phys. Rev. Lett. 2009;103:132501.
Schuetrumpf B, Klatt MA, Iida K, Schroder-Turk GE,Maruhn JA, Mecke K, Reinhard PG. Minimal surfaces in Nuclear Pasta with the time-dependent hartee fock approach. Proc. Int. Winter Meeting on Nuclear Physics; 2014.
Pethick CJ, Potekhin A. Liquid Crystals in the mantle of neutron stars. Phys. Lett. B 1998;427:7.
Pons JA, Vigano D, Rea N. A highly resistive layer within the crust of X-ray pulsars limits their spin periods. Nature Physics. 2013;9:431.
Laurer JH, Hajduk DA, Fung JC, Sedat JW, Smith SW, Gruner SM, Agard DA, Spontak RJ. Micro-structure analysis of a Cubic bi-continuous morphology via near SIS Triblock Copolymer. Macromolecules. 1997;30:3938.
Ivanenko DD, Kurdgelaidze DF. Lett. Nuovo cim. 1969;2:13.
Itoh, N. Hydrostatic equilibrium of hypothetical quark Stars. Prog. Theor. Phys. 1970;44:291.
Lopez-Fune E. Magnetized strange quark matter under stellar equilibrium and finite temperature. Arxiv: 1902.02717[HE]; 2019.
Weber F. Strange quark matter and compact stars. Prog. Parti. NUCL. Phys. 2005;54:193.
Lattimer JM. New astron. Rev. 2010;54: 101.
Witten E. Cosmic separation of phases. Phys. Rev. D. 1984;30:272.
Ferrer EJ, de la Incera V, Sanson P. Quark matter contribution to the heat capacity of magnetized neutron stars. Phys. Rev. D 2021;103:123013.
Alford M, Rajagopal K, Wilczek F. QCD at finite baryon density: nucleon droplets and color superconductivity. Phys. Lett. B 1998;422:247.
Olausen SA, Kaspi VM. The McGILL magnetar catalog. Astrophys. J. Suppl. Ser. 2014;212 6.
Dong L, Shapiro SL. Cold equation of state in a strong magnetic field: Effects of Inverse beta –Decay. Astrophys. J.1991;383:745.
Ferrer EJ, de la Incera V, Keith JP, Portillo I, Springsteen PL. Equation of state of a dense and magnetized Fermion systems. Phys. Rev. C. 2010;82:065802.
Paulucci L, Ferrer EJ, de la Incera V, Horvath JE. Equation of state for the magnetic-color-flavor-locked phase and its implications for compact star models. Phys. Rev.D. 2011;83:043009.
Cardall CY, Prakash M, Lattimer JM. Effects of strong magnetic fields on neutron star structure. Astrophys. J. 2001;554:322.
Ferrer EJ, Hackebill A. Thermodynamics of neutrons in a magnetic field and its implications for neutron stars. Phys. Rev. C 2019;99:065803.
Chu PC, Li X-H, Ma H-Y, Wang B, Dong Y-M, Zhang X-M. Quark matter and quark stars in strong magnetic fields at finite temperature within the confined-isospin-density-dependent mass model. Phys. Lett. B. 2018;778:447.
Mondal T, Jaikumar P. Effect of strong magnetic field on competing order parameters in two-flavor dense quark matter. Adv. High. Energy Phys. 2017; 2017:6272909(2017).
Ortel M, Hampel T, Klahn, S. Type I, Equation of States for Supernovae and Compact stars. Rev. Mod. Phys. 2017;89: 015007.
Oyamatsu K, Iida K. Symmetry energy at subnuclear densities and nuclei in neutron star crusts. Phys. Rev. C. 2007;75:015801.
Kubis S, Porębskab J, Alvarez-Castillo DE. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties. Acta Phys. Polonica B. 2010;41:2449
Roca-Maza X, Brenna M, Agrawal BK, Bortignon P, Colo G, Cao LG, Paar N, Vretenar D. Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness. Phys. Rev. C. 2013;87:034301
Pethick CJ, Potekhin AY. Liquid Crystals in the Mantles of Neutron Stars. Phys. Lett. B 1998;427:7.
Ravenhall DG, Pethick CJ, Wilson JR, Structure of Matter below Nuclear Saturation Density. Phys. Rev. Lett. 1983; 50:2066.
Avancini SS, Chiacchiera S, Menezes DP, Providencia C. Warm pasta phase in the Thomas-Fermi approximation. Phys. Rev. C. 2010;82:055807
Bao SS, Hu JN, Zhang ZW, Shen H. Effects of the symmetry energy on properties of neutron star crusts near the neutron drip density. Phys. Rev. C. 2014;90:045802
Scurto L, Pais H, Gulminelli F. Strong Magnetic fields and Pasta phases revisited, Phys. Rev. D. Eprint arXiv:2212.09355; 2023.
Nandi R, Bandyopadhyay D, Mushustin I, Greiner W. Inner crusts of neutron stars in strongly quantizing magnetic fields. Astrophys. J. 2011;736:156
Ruderman R. Pulsars: Structure and dynamics. Ann. Rev. Astron. Astrophys. 1972;10:427
Baym G, Hatsuda T, Kojo T, Powel PD, Song Y, Takatsuka T. From hadrons to quarks in neutron stars: A review Rep. Prog. Phys. 2018;81:056902
Khanna KM, Kandie DK, Tonui JK, Cherop HK. Incommensurate crystallization of neutron matter in neutron stars. East Europe J. Phys. 2020;2:57.
Mann A. The golden age of neutron-star physics has arrived. Nature. 2020;579:20.
Grassi F. Quark core stars, quark stars and strange stars. Zeitsch. Fur Phys. C. 1989; 44:129.
Stein AW. Frontiers the Physics of Dense Matter for Neutron Stars. J. Phys. Conf. Series. 2016;706:022001
Pethick CJ, Schäfer T, Schwenk A. in Proc. Universal Themes of B-E condensation. Eds: DW. Snoke WP. Littlewood (Cambridge Univ. Press. UK). 2017;573.
Helström S. Neutron Star structure and Equation of State. Web: theory. uchicago.edu/teaching >final paper >helstrom
Anntic S, Stone JR, Thomas AW. Neutron stars from crust to core within the Quark-meson coupling model. in Proc. HIAS 2019, EPJ web of Conf. 2020;232:03001.
Hebeler K, Lattimer JM, Pethick CJ, Schwenk A. Equation of state and neutronstar properties constrained by nuclear physics and observation. Astrophys. J. 2013;713:11.
Weber F. Strangeness in neutron stars. Acta Phys. Polonica B. 1999;30:3149.
Lattimer JM. Neutron star masses and radii. in Xiamen custipen workshop on the EoS of dense neutron rich matter in the Era of Gravitational Wave Astronomy, AIP Con. Proc. 2019;2127:020001.
Gross D, Wilczek F. Ultraviolet behavior of non-abelian gauge theories.phys. Rev. Lett. 1973;301343; Asymptotically Free Gauge Theories-I. Phys. Rev. D 1973;9:980.
Wilczek F. Asymptotic freedom: from paradox to paradigm. Lecture given in acceptance of the Nobel Prize, Dec’2004, PNAS. 2005;102:8403.
Huwang JK. Asymptotic freedom, quark confinement, proton crisis, neutron structure, dark matter and relative force strength. DOI: 10.20944/preprints202102.0395vi
Shuryak E. Physics of strongly coupled quark-gluon plasma. Prog. Parti. Nucl. Phys. 2009;62:48.
Sawyer RF. Condensed π− Phase in Neutron-Star Matter. Phys. Rev. Lett. 1972; 29:382.
Dev K, Gleiser M. Anisotropic Stars: Exact Solutions. Gen. Rel. Grav. 2000; 34 :1793
Cameron AGW, Canuto V. Neutron stars: General review. In Proc. 16th Solvay Conf. on Astrophysics and Gravitation,Neutron Stars (Brussels: Editions de 1’Universite de Bruxelles. 1973;221.
Canuto V. 8th Texas symp. on Relativistic Astrophys. 1977;302,514.
Kippenhahn R, Weigert A. Stellar structure and evolution. Springer Verlag, NY. 1990; 192.
Greiner C. Physics of strange star. In Proc. IV Int. Conf. on Strangeness in Quark Matter, J. Phys. G. 1999;25:389.
Annala E, Gorda T, Kurkela A, Nättilä S, Vuorinen A. Evidence for quark matter cores in massive neutron star. Nature Phys. 2020;16:907.
Dai S, Xu R. Thermal and non-thermal radiation from pulsars: hints of physics. in asp conf. series : Electromagnetic Radiation from Pulsars and Magnetars. 2012;466:129.
Lai, X Y, Xu RX. A note on the discovery of a 2Mo pulsar. Phys. Rev. C. 2021;104 045805.
Ling SJ, Sanny J, Maebs W, University Physics. Vol-3, Chapter 11.3 (Openstax. Texas, USA; 2018.
Poudel PR. Quarks and their discovery. The Himalayan Physics. 2010;1:62.
Taylor JH, Manchester RN, lyne ag. catalog of 558 pulsars. Astrophys. J. Suppl. Series 1993;88:529.
Mclaughlin M, Stairs IH, Kaspi VM. et al. Astrophys. J. Lett. 2003;591:L185.
Duncan RC, Thompson C. Formation of Very Strongly Magnetized Neutron Stars Astrophys. J. Lett. 1992;392,L9.
Thompson C, Duncan RC. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent Neutrino, X-Ray, and Alfven Wave Emission. Astrophys. J. 1996;473,322.
Senco SB, Froul DA, Harrison FA etal. Astrophys. J. 2010;711:641.
Starling R LC, Starling, E. Rol, A.J. Vander Horst et al. Mnras. 2001;400:90.
Tatsumi T. Ferromagnetism of quark liquid. Phys. Lett. B. 200;489:280.
Ferrer EJ, de la Incera V, Kaith JP et al. Equation of state of a dense and magnetized fermion system. Phys. Rev. C. 2010;82:065802.
Lattimer JM, Prakash M. The physics of neutron stars. Science. 2004;304:536.
Bordbar GH, Bahri H, Kayanikhoo F. Calculation of the structural properties of a strange quarks star in the presence of a strong magnetic field using a density dependent bag constant. Res. Astron. Astrophys. 2012;12:1280.
Hou J-X, Peng G-X, Xia C-J, Xu J-F. Magnetized strange quark matter in a mass density dependent model. Chinese Phys. C 2015;39:015101.
Farhi E, Jaffe RL. Strange matter. Phys. Rev. D. 1984;30:2379.
Glendenning N K, Weber F. From Strange star to strange dwarf Astrophys. J. 1993; 400:647.
Bhattacharyya A, Ghosh S K, Joarder P S, Mallick R, Raha S. Conversion of a neutron star to a strange star: A two-step process. Phys. Rev. C. 2006;74:065804.
Available:http://www.britannica.com/technology/bola
Pressley BR. Can you survive? Primitive, Survival and Wildness Living Skills. Benjamin Pressley. 2013;ISBN: 10:1463649444.
Martin JE. Using triaxial magnetic fields to create optimal particle composites. Composites Part A. 2005;36:545.
Williamson R L, Martin J E. Field structured composite studies. SANDIA Report No-SAND2004-1291; 2004.
Martin J E, Venturini E, Odinek J, Anderson RA. Anisotropic magnetism in field structured composites. Phys. Rev. E. 2000; 61:2818.
Wu H, Xu Z, Wang J, Bo X, Tong Z, Jiang S, Zhang G. Chain formation mechanism of magnetic particles in magnetorheological elastomers during prestructure. J. Magnetism. Magnetic Materials. 2021;527: 167693.
Ando T, Katayama D, Hirota N, Koike O, Tatsumi R, Yamato M. Structure formation of magnetic particles under magnetic fields towards anisotropic material.in Proc. 9th Int. Symp on Electromagnetic Processing of Materials (EPM2018), IOP Conf. Ser. 2018; 424:012076 .
Dev K, Gleiser M. Anisotropic Stars: exact solutions. Gen. Rel. Grav. 2002;34: 1793.
Banerjee S. Mathematical Model of Relativistic anisotropic compact stellar model admitting linear equation of state. Comm. Theor. Phys. 2018;70:585.
Paret DM, Perez Martinez A, Ayala A, Piccinelli G, Sanchez A. Neutron star velocities and magnetic fields. EPJ Web Conf. (ISMD 2017). 2018;172:07002.
Pace van Devender J, Shoemaker IM, Sloan T, van Devender AP, Ulmen BA. Mass distribution of magnetized quark nugget dark matter and comparison with requirement and observations. Nature Scientific Reports. 2020;10:17903.
Ortel M, Hampel M, Klähn T. Equation of state for supernovae and compact stars. Rev. Mod. Phys. 2017;89:015007.
Bhattacharyya A, Mishustin I M, Greiner W. Deconfined phase transition in compact stars : Maxwell vs Gibbs construction of the mixed phase. J. Phys. G. 2010;37:025201.
Rizaldy R, Sulakson A. Deformation of quark stars under internal strong magnetic fields. J. Phys. Conf. series. 2019;1354: 012006.
Sinha M, Huang X-G, Sedrakian A. Strange quark matter in strong magnetic fields within a confining model. Phys. Rev. D 2013;88:025008.
Kharzeev DE, McLerran LD, Warringa H J. The effects of topological charge change in heavy ion collisions. Nucl. Phys. A. 2008; 803:227.
Yang L, Wen X-J. Magnetic effect vs thermal effect on quark matter with a running coupling at finite densities. Comm. Theor. Phys. 2017;67:535.
Kayanikhoo F, Providencia C. The effect of magnetic field on the structure of strange quark star. In Proceedings of RAGtime 20–22, 15–19 Oct., 16–20 Sept., 19–23 Oct., 2018/2019/2020, Eds. Torok G, Karas V, Silesian University in Opava. 2020;121.
Dvornikov M. Generation of strong magnetic fields in dense quark matter driven by the elelctroweak interaction of quarks. Nucl. Phys. B. 2016;913:79.
Wei W, Liu X-M, Zheng X-P. Quark stars with strong magnetic fields: Considering different magnetic field generation. Res. Astron. Astrophys. 2017;17:102.