Study of f(T) Dark Energy Model Using Different Choices of the Cosmological Scale Factor
Ayman A. Aly
Department of Physics, Faculty of Science, Damnhour University, Damnhour, Egypt.
A. Sabry *
Department of Physics, Faculty of Science, Damnhour University, Damnhour, Egypt.
M. N. El-Hammamy
Department of Physics, Faculty of Science, Damnhour University, Damnhour, Egypt.
*Author to whom correspondence should be addressed.
Abstract
In this paper, we investigated the behaviors of some cosmological parameters as a function of redshift z using some dark energy models namely intermediate, logamediate and emergent scenarios of the universe adopting their cosmological scale factors in the frame work of the teleparallel gravity or the f(T) theory. By considering the present value of cosmological parameters, the behaviors of deceleration, jerk, kerk and lerk parameters and equation of state showed that the universe has an accelerated expansion behavior described by phantom-like behavior. The stability of the model was studied using the squared speed of sound v2s verifying that the model is stable. Finally, we discussed the generalized second law of thermodynamics’s (GSLT) validity. The positive behavior of the entropy indicates that the GSLT is verified. These results of functions are in agreement with the recent observational data.
Keywords: Dark Energy, modified gravity, scale factor, accelerated behavior, inflation.
How to Cite
Downloads
References
Perlmutter S, Aldering G, Goldhaber G, Knop R, Nugent P, Castro P, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal. 1999;517(2):565.
Spergel DN, Bean R, Dor´e O, Nolta M, Bennett C, Dunkley J, et al. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. The Astrophysical Journal Supplement Series. 2007;170(2):377.
Spergel DN, Verde L, Peiris HV, Komatsu E, Nolta M, Bennett C, et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series. 2003;148(1):175.
Contaldi CR, Hoekstra H, Lewis A. Joint CMB and weak lensing analysis; physically motivated constraints on cosmological parameters; 2003. arXiv preprint astro-ph/0302435.
Colless M, Dalton G, Maddox S, Sutherland W, Norberg P, Cole S, et al. The 2df galaxy redshift survey: spectra and redshifts. Monthly Notices of the Royal Astronomical Society. 2001;328(4):1039–1063.
Tegmark M, Strauss MA, Blanton MR, Abazajian K, Dodelson S, Sandvik H, et al. Cosmological parameters from SDSS and WMAP. Physical review D. 2004;69(10):103501.
Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal. 1998;116(3):1009.
Chattopadhyay S, Pasqua A, Aly AA. Interacting Ricci dark energy in scalar Gauss-Bonnet gravity. The European Physical Journal Plus. 2014;129(2):31.
Jawad A, Rani S, Saleem M. Cosmological study of reconstructed f(T) models. Astrophysics and Space Science. 2017;362(4):63.
Pasqua A, Chattopadhyay S, Khurshudyan M, Aly AA. Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor. International Journal of Theoretical Physics. 2014;53(9):2988–3013.
Tajahmad B. Reconstruction of F(T) gravity in homogeneous backgrounds; 2018. arXiv preprint arXiv:181210339.
Nojiri S, Odintsov SD. Introduction to modified gravity and gravitational alternative for dark energy. International Journal of Geometric Methods in Modern Physics. 2007;4(01):115–145.
Copeland EJ, Sami M, Tsujikawa S. Dynamics of dark energy. International Journal of Modern Physics D. 2006;15(11):1753–1935.
Bilic N, Tupper GB, Viollier RD. Dark matter, dark energy and the Chaplygin gas; 2002.
Ghosh R, Chattopadhyay S, Debnath U. A dark energy model with generalized uncertainty principle in the emergent, intermediate and logamediate scenarios of the universe. International Journal of Theoretical Physics. 2012;51(2):589–603.
Pasqua A, Chattopadhyay S, Beesham A. A look into the cosmological consequences of a dark energy model with higher derivatives of H in the framework of Chameleon Brans-Dicke Cosmology; 2016. arXiv preprint arXiv:160703384.
Karami K, Khaledian M, Felegary F, Azarmi Z. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe. Physics Letters B. 2010;686(4-5):216–220.
Bahamonde S, Camci U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry. 2019;11(12):1462.
Hohmann M, J¨ arv L, Krˇsˇs´ak M, Pfeifer C. Modified teleparallel theories of gravity in symmetric spacetimes; 2016. arXiv preprint arXiv:190105472.
Jamil M, Momeni D, Myrzakulov R. Attractor solutions in f (T) cosmology. The European Physical Journal C. 2012;72(3):1959.
Yousaf Z, Bamba K, Bhatti M, Ghafoor U. Charged gravastars in modified gravity. Physical Review D. 2019;100(2):024062.
Del Popolo A, Pace F, Mota DF. Mass-temperature relation in Λ CDM and modified gravity. Physical Review D. 2019;100(2):024013.
Daouda MH, Rodrigues ME, Houndjo M. Reconstruction of f (T) gravity according to holographic dark energy. The European Physical Journal C. 2012;72(2):1893.
Li B, Sotiriou TP, Barrow JD. Large-scale Structure in f (T) Gravity. Physical Review D. 2011;83(10):104017.
Karami K, Abdolmaleki A. Generalized second law of thermodynamics in f(T) gravity. Journal of Cosmology and Astroparticle Physics. 2012;2012(04):007.
Arabsalmani M, Sahni V. Statefinder hierarchy: An extended null diagnostic for concordance cosmology. Physical Review D. 2011;83(4):043501.
Xu L, Lu J, Li W. Generalized holographic and Ricci dark energy models. The European Physical Journal C. 2009;64(1):89.
Gao C, Wu F, Chen X, Shen YG. Holographic dark energy model from Ricci scalar curvature. Physical Review D. 2009;79(4):043511.
Barrow JD, Liddle AR. Perturbation spectra from intermediate inflation. Physical Review D. 1993;47(12):R5219.
Barrow JD, Nunes N. Dynamics of logamediate inflation. Physical Review D. 2007;76(4):043501.
Ellis GF, Maartens R. The emergent universe: Inflationary cosmology with no singularity. Classical and Quantum Gravity. 2003;21(1):223.
Mukherjee S, Paul B, Dadhich N, Maharaj S, Beesham A. Emergent universe with exotic matter. Classical and Quantum Gravity. 2006;23(23):6927.
Debnath U, Chattopadhyay S, Jamil M. Fractional action cosmology: some dark energy models in emergent, logamediate, and intermediate scenarios of the universe. Journal of Theoretical and Applied Physics. 2013;7(1):25.
Dkabrowski MP. Statefinders, higher-order energy conditions, and sudden future singularities. Physics Letters B. 2005;625(3-4):184–188.
Macdonald A. Comment on” The Cosmic Time in Terms of the Redshift”, by Carmeli et al; 2016. arXiv preprint gr-qc/0606038.
Pasqua A, Assaf KA, Aly AA. Power law and logarithmic entropy corrected Ricci dark energy models in Brans-Dicke chameleon cosmology. International Journal of Theoretical Physics. 2014;53(2):566–578.
Zadeh MA, Sheykhi A. Stability of HDE model with sign-changeable interaction in Brans-Dicke theory; 2018. arXiv preprint arXiv:180410843.
Bekenstein JD. Black holes and entropy. Physical Review D. 1973;7(8):2333.
Iqbal A, Jawad A. Thermodynamics of Ricci-Gauss-Bonnet Dark Energy. Advances in High Energy Physics. 2018;2018.
Azuma K, Subramanian S. Do black holes store negative entropy?; 2018. arXiv preprint arXiv:180706753.